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Machine Learning for Genome-Wide Association Studies: A Critical Review 
 
Introduction and Background 
 
The finalisation of the Human Genome Project in April 2003, when a complete 
sequence was published for the first time, created the potential to identify a large set 
of single nucleotide polymorphisms (SNPs) across the entire genome. Consequently, 
this has opened the door to possibilities for great improvements in diagnosis and 
therapeutics (Hirschorn & Daly 2005). In the years following the Human Genome 
Project, genome-wide association (GWA) studies have resulted in identification of a 
large number of disease-susceptibility loci for several complex diseases, many of 
which have been successfully replicated in subsequent studies. These results have 
provided insight into the way these alleles relate to multifactorial traits and the 
resulting novel biological insights will hopefully lead to clinical advances that will 
change the way such diseases are managed. However, while the vast amounts of 
biological data hold much promise, many of the SNPs that have been discovered 
actually have relatively small effects upon disease susceptibility. There remains a 
need for improved methods of analysis in order to extract the most useful clinical 
information from the data (McCarthy et al. 2008). GWA studies are typically 
performed according to a case-control approach. Essentially, this methodology 
analyses the genotype from large numbers of individuals: the case group have the 
disease or trait under examination, while the members of the control group do not. 
The studies involve thousands of individuals, and examine hundreds of thousands of 
SNP loci – usually across the entire human genome. Each group is genotyped for a 
number of known SNPs and, typically, statistical analysis is performed upon the 
results. A typical assumption is that associated loci are in linkage disequilibrium (LD) 
with other variants that cause disease, or that variants occurring at particular loci are 
associated with changes in biological function, such as suppression of proteins 
known to create tumour suppression. These differing functional changes are 
hypothesised to result in disease susceptibility.  
 
In addition to the fact that most SNPs discovered via GWA studies may have 
relatively small effects regarding such susceptibility, there are also concerns with 
GWA studies that have been reported in the research literature. Typically the 
analyses performed do not take into account any prior knowledge regarding the 
disease or traits in question. Further, it is often the case that only a single SNP is 
considered at a time, which results in linear analyses: these may be restrictive in 
terms of representing the complete picture of the genetic basis of a given disease or 
trait.  
 
In light of this, a tendency is now occurring to look for more sophisticated analysis 
methods leading towards an approach that is more holistic and has greater power to 
explore the relationship between common sequence variations and predisposition to 
disease. This approach respects the complexity of the genotype–phenotype 
relationship, and aims to try and elucidate the genetic architecture of complex traits. 
Further, this methodology is focused more upon epistatic and gene–environment 
interactions, which have additional consequences in terms of the analytical 
complexity.  
 
One of the mainstays of this new approach to analysis of GWA studies, in order to 
realise the benefits outlined above, is the application of machine learning (ML) 
methods. In this report, we review and critique some of the ML methods that have 
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been applied to recent GWA studies, and further discuss how effective they have 
been when compared with some of the standard statistical analysis methods. 
 
Machine Learning Methods – Overview 
Different ML approaches have been proposed and applied in order to model the 
relationship between combinations of SNPs, genetic variations and environmental 
factors and these relate to disease susceptibility for certain complex diseases. 
 
Support Vector Machines 
Support Vector Machines (SVMs) are applied to supervised learning problems. The 
key idea is to project the training data – which has relatively low dimensionality – 
onto a higher-dimensional feature space. In this manner, it is easier to separate, and 
thus distinguish, the input data. SVMs have been applied to analyse several GWA 
studies and are, at present, one of the more popular ML techniques for this particular 
application. The technique has been extremely effective in a very large number of 
diverse applications, and it is also noted for its computational efficiency. Further, it is 
possible to implement a kernel that provides a nonlinear classification boundary, 
which may increase the accuracy of the method for effective analysis of GWA study 
data. 
 
For GWA studies, applications of SVM include Ban et al. (2010) whose study 
examined the importance of certain gene-gene interactions in type 2 diabetes 
mellitus (T2DM). In this study, 408 SNPs present in 87 genes, with evidence of 
association in major T2DM pathways, were analysed. There were 462 T2DM patients 
and 456 disease-free controls, all of Korean ethnicity. The results were promising: 
SVMs reported a 65.3% prediction rate, which increased to over 70% when applied 
to subsets of the data relating to gender. Novel associations were also discovered.  
 
Waddell et al. (2005) applied SVM-based classification to analyse a form of cancer 
known as multiple myeloma. Using 3,000 SNPs in the profiling process and using a 
standard form of cross-validation upon the training data resulted in an accuracy of 
71%. It is also noted by the authors that they used a relatively sparse set of SNPs 
relative to the entire genome, and thus “in future studies with a denser SNP 
coverage, this information would be potentially more useful.” This consideration is 
key to the concept of using the underlying biology to refine the particular machine 
learning techniques applied to the GWA study analysis. 
 
Another study achieved good results by applying SVMs to the problem of identifying 
combinations of SNPs that can predict the susceptibility to breast cancer. Listgarten 
et al. (2004) considered the SNPs from 45 genes of potential relevance to breast 
cancer etiology in 174 patients as compared to the matched normal controls. They 
obtained an accuracy of 69% when using SVMs as the learning algorithm. The 
authors concluded that multiple SNPs from different genes over distant parts of the 
genome are better at identifying breast cancer patients than any single SNP alone. 
 
Recently, Uhmn et al. (2009) applied several machine learning techniques including 
SVM to predict “patients' susceptibility to chronic hepatitis from SNPs.” Interestingly, 
SVMs results were slightly inferior to decision tree-based method implemented for 
the same data set, with classification accuracies of 67.53% and that of the decision 
tree is 72.68% respectively. 
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Manhattan diagram from Ban et al. (2010). For each SNP, the p-value was calculated based upon a chi-
squared test. From 408 SNPs, investigated to determine T2D susceptibility, 27 showed a significant 
genotype- or allele-based p-value (i.e. < 0.05). 
 
Advantages and Disadvantages of Support Vector Machines 
Unlike other ML methods, SVMs do not suffer from the ‘curse of dimensionality’ and 
there is a strong theoretical basis which guarantees a certain minimum performance 
(Christianni & Shawe-Taylor 2000).  As outlined above, the method has discovered 
novel associations when applied to GWA studies and the SNP associations it has 
predicted are well-correlated with standard statistical analyses of the same data.  
 
However, a different approach must be used in order to apply the method to 
nonlinear classification, and this increases the complexity of the implementation 
somewhat (Boser et al. 1992), typically by introducing radial basis functions as the 
kernel function. This theoretical complexity can make the method remote from the 
underlying genetic architecture, which can be considered a significant disadvantage 
despite its computational performance. It is also worth noting that the actual 
performance of SVMs has been very different across different GWA studies; notably, 
in a recent application of the method for GWA studies involving T1D and Parkinson’s 
disease (Mittag et al.. 2012). This report is of particular interest, as the authors 
reported significant differences when applying the method to the two studies. For 
T1D, the results were excellent and commensurate with the accuracy reported 
elsewhere in the literature: “predictions with an area under the receiver operating 
characteristic curve (AUC) of ~0.88 for T1D, highlighting the strong heritable 
component (�90%)”. However, the results were relatively poor when the same 
method was applied for the Parkinson’s disease data, resulting in AUC ~0.56 and 
heritability prediction of ~38%. Further investigation via simulation studies resulted in 
some optimism with regard to the future effectiveness of the method with GWA 
studies of the latter type. However, the cautionary note does indicate that ML 
methods should not be expected to work “out of the box” and careful refinement to 
each particular study is required, at the present time. 
 
Roshan et. al. (2011) applied both SVMs and random forests to simulated and real 
GWA study data sets. Their conclusions are interesting, as they show a direct 
comparison between two machine learning methods and a traditional statistical 
analysis: “We find the support vector machine to rank causal SNPs and those from 
associated regions higher than random forest and chi-square if applied to the top 2r 
chi-square-ranked SNPs, where r is the number of SNPs with p-values within 
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Bonferroni, and the value of r is sufficiently large.” We note that the Bonferroni 
correction is the most stringent form of multiple hypothesis testing, and this lends 
extra credence to the conclusions in the analysis. 

Random Forests 
The use of classification and regression trees is a mainstay of machine learning 
methods, particularly when there is missing input data. The central idea is the 
creation of a graph or network-type model which, given a set of decisions (or other 
training data), predicts the outcome and can refine its classification given input data. 
 
This concept can be taken a step further by creating an ensemble of many decision 
trees to a single set of training data, with each tree effectively ‘voting’ for a particular 
outcome, and this approach is referred to as a random forest (RF). In this case, the 
consensus outcome will be the final decision or prediction. We note that the RF 
method requires the same implementation criteria as do classification and regression 
trees, notably how to define the branching conditions (Biau et al. 2008). However, in 
principle at least, the actual predictor could be of any type: the possibility exists, for 
example, of a random forest of support vector machines. 
 
Zou et al. (2012) applied RF to a GWA study involving Alzheimer’s disease (AD). The 
results of the study, including an RF method enhanced with post-classification 
enrichment analysis, resulted in 1,058 SNPs with susceptibility associations being 
detected. Several of the resulting SNPs had previously been shown to have 
statistical significance with regard to AD susceptibility. Importantly, the authors noted 
that “the susceptible SNPs were investigated by enrichment analysis and 
significantly-associated gene functional annotations, such as 'alternative splicing', 
'glycoprotein', and 'neuron development', were successfully discovered, indicating 
that these biological mechanisms play important roles in the development of AD in 
APOEɛ4 carriers”. The identification of such mechanisms is a very promising 
direction for future research in this area, and may well present an example of an 
emerging trend: going beyond classification and large-scale data analysis to provide 
important areas for further research. 
 
Goldstein et al. (2010) applied random forests to a GWA study concerning multiple 
sclerosis (MS). The case-control study involved 300,000 SNPs. One of the key 
findings from the research was the necessity to refine and tune the machine learning 
techniques in order to maximise their efficiency and eliminate noise. In the case of 
RF, this involved pruning based upon LD. There was found to be good agreement 
with the original statistical analysis of the GWA study data set, and the RF method 
also predicted four new candidate MS genes. It is of interest to compare this work 
with Zou et al. (2010), as both studies reached similarly conclusions regarding how to 
successfully implement RF in this context. 
 
In another study, the RF method was applied to a GWA study investigating Crohn’s 
disease by Schwarz et al. (2010). Each of the RF implementations analysed a 
simulated dataset comprising 1,006 samples genotyped at 275,153 SNPs. The four 
most significant SNPs detected by the RF corresponded with several GWA studies 
and were known to be strongly associated with susceptibility to Crohn’s disease. 
Other novel genes that had not previously been associated were also found, and 
these suggest new avenues for further research. 
 
Advantages and Disadvantages of Random Forests 
Random forests are considered a very robust method in general, and there have 
been successful implementations for GWA studies, as discussed above. However, 
caution is advised with the method: a recent study (Nicodemus & Malley 2009) 
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showed that “considering correlation within predictors is crucial in making valid 
inferences using variable importance measures”, and this was particularly important 
when applying RF. 
 
Kim et al. (2009) analysed the overall performance of RF with respect to GWA study 
analyses, and their conclusions summarise well the advantages and disadvantages 
of the method. It performed well when compared with a more traditional regression 
analysis; however, the authors conclude that “The causal marker that had an 
interactive effect with smoking did show moderate evidence of association in the RF 
and regression analyses, suggesting that RF may perform well at detecting such 
interactions in larger, more highly powered datasets.” 
 
 

 
An overview of the Random Forest algorithm (reproduced from Moore et al. 2010) 
 
 
Multifactor Dimensionality Reduction 
Multifactor Dimensionality Reduction (MDR) is a method that has been developed in 
order to deal with the problem of understanding high-order gene-gene interaction in 
GWA studies. Essentially, the method involves selection of a specific number of 
SNPs, and then the corresponding case-control ratios for each multi-locus genotype 
are calculated. Consequently, this partitioning may reveal genotypes associated with 
risk. Finally, cross-validation is applied in order to validate the method.  
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Diagram to show how MDR is applied (from Motsinger & Ritchie, 2006). In step 1, cross-validation of the 
data is performed. In step 2, a set of n genetic and / or environmental factors are selected. In step 3, the 
ratio of cases to controls within each multifactor class are calculated. In step four, each multifactor cell in 
the n-dimensional space is labelled as high risk or low risk, after comparison with a particular threshold 
value.  In steps five and six, the model with the best misclassification error is selected and the prediction 
error of the model is estimated using the independent test data. 
 
Noffisat & Motsinger-Reif (2011) applied MDR to a set of simulated GWA data in 
order to compare its effectiveness with both LR and other analysis methods. The aim 
of this research was to understand the effectiveness of MDR in epistasis; namely if 
this machine learning approach was able to detect gene-gene interactions in GWA 
studies. The approach taken was to apply three simulated types of disease models 
(one-locus main effect, two-locus epistatic effects, and two-locus models with joint 
epistatic and main effects). The authors conclude that “importantly, MDR performed 
as well as EC and linear regression for main effect models. It also significantly out 
performs LR for various two-locus epistatic models, while it has equivalent results as 
EC for the epistatic models. The results of this study demonstrate the potential of 
MDR as a filter to detect gene–gene interactions in GWAS studies.” 
 
Another application was performed by Mahachie John et al. (2011) applied MDR to 
the analysis of simulated data sets. They conclude that “dealing with phenotypic 
mixtures and genetic heterogeneity will remain challenging for epistasis screening 
methods, for some time to come. Our empirical results suggest that more work is 
needed to better accommodate these particularities. Benefits may be gained from 
identifying the trait-specific factors (genetic or non-genetic) that best characterize 
mixed phenotypic populations.” 
 
Ritchie et al. (2001) performed an investigation into disease susceptibility for a 
particular class of breast cancer. They concluded that “when it was applied to a 
sporadic breast cancer case-control data set, in the absence of any statistically 
significant independent main effects, MDR identified a statistically significant high-
order interaction among four polymorphisms from three different estrogen-
metabolism genes. To our knowledge, this is the first report of a four-locus interaction 
associated with a common complex multifactorial disease”. Although earlier than the 
other MDR research studies described in this report, it has the advantage of being 
successful when applied to experimental, rather than simulated, data. 
 
A very recent investigation by Collins et al. (2013) applied MDR to analyse data 
relating to a study of tuberculosis (TB) in order to determine high-order epistatic 
interactions. The authors concluded: “we have identified statistically significant 
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evidence for a three-way epistatic interaction that is associated with susceptibility to 
TB. This interaction is stronger than any previously described one-way or two-way 
associations. This study highlights the importance of using machine learning 
methods that are designed to embrace, rather than ignore, the complexity of common 
diseases such as TB.” We again note that the recent trend of ensuring that ML 
methods are applied with careful consideration of the fundamental biology and 
disease mechanism. 
 
Advantages and Disadvantages of Multifactor Dimensionality Reduction 
Implementation of MDR may complex from a computational view, as the method 
relies upon “search algorithms, cross-validation and permutation testing” (Moore et 
al. 2006). MDR has a number of advantages, however: it assumes that no hypothesis 
about the value of a given statistical parameter is made. Further, it assumes no 
particular inheritance model and is directly applicable to case-control, cohort and trio-
based GWA studies. The overall predictive accuracy of the method has been good 
for the studies it has been applied to. However, it is limited in that it can only be used 
for detecting and modelling epistasis. 
 
 
Naïve Bayes and Variants 
The naïve Bayes classifier (NB) is a well-established machine learning method that 
applies Bayes theory, together with particular assumptions regarding feature 
independence. Several variants and improvements to the fundamental naïve Bayes 
implementation have been proposed for analysis of GWA study data. In this section, 
we briefly review some of the approaches that have been formulated and applied to 
recent GWA studies. One of the main concerns with application of naïve Bayes is 
that it may exhibit bias when there are large amounts of attributes to be analysed. 
Although this effect can be mitigated (Li et al. 2008), alternative formulations of the 
method have been proposed for GWA data in order to remedy potential issues. 
 
In a recent investigation by Sebastiani et al. (2012) a standard naïve Bayes classifier 
was applied to a set of simulated data, consisting of 3,000 cases and 3,000 controls, 
and genotype data from 75 causal SNP and 500,000 null SNPs. The authors report 
good agreement between their NB approach and a traditional regression model.  
 
Wei et al. (2011) refined the NB approach by performing model-averaging over a 
large number of NB models. The method was applied to a data set of late onset 
Alzheimer’s disease in 1,411 individuals who each had 312,318 measured SNPs. 
The accuracy of the classifier was significantly greater than standard NB and 
comparable with a feature-selection NB approach. However, the model-averaged 
method had a run time comparable with NB, namely two orders of magnitude faster 
than using feature selection. 
 
Malovini et al. (2011) applied a hierarchal Bayes model (HBM) to simulated case-
control data sets with 300 elements in each set. They considered SNPs mapping to 
the same region of LD as “details” of the corresponding locus. Each of these details 
contributed to the overall effect of the region on each particular phenotype. The 
method was applied to both simulated data and two experimentally-acquired data 
sets, one for T1D and one for T2D. The former consisted of 1,963 patients affected 
by T1D, 1,458 control individuals from the UK Blood Service and 458,868 autosomal 
SNPs. The other experimental data comprised 1,924 patients affected by T2D, 1,458 
control individuals and 458,868 autosomal SNPs (mapping to chromosomes 1- 22). 
The classification accuracy of the HNB method on both the T1D and T2D data were 
comparable in accuracy to other methods used to report upon the data. 
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One interesting approach was performed by Sambo et al. (2012), in which a variation 
referred to as bag of naïve Bayes (BoNB), was used. The approach is based upon 
NB and enhanced by three main additions: bootstrap aggregating of an ensemble of 
NB classifiers, a strategy for ranking and selecting the attributes used by each 
classifier in the ensemble and a permutation-based procedure for selecting 
significant biomarkers. The method was tested on case-control data for T1D derived 
from the WTCCC study. The BoNB method achieved “significantly higher 
classification accuracy” compared to a standard NB implementation and a penalised 
logistic regression algorithm. 
 
Advantages and Disadvantages of Bayesian Methods 
As noted earlier, Bayesian models have to be carefully applied to complex models: if 
a model is selected to maximise the likelihood function it may lead to overfitting of the 
data. However, Bayesian classifiers have been applied with success in many 
problems and have seen much use in bioinformatics applications. It is also possible 
to refine the selection of the prior distribution to ensure that there is a sufficient trade-
off between the error associated with fitting the data and the complexity of the model, 
although this is not a trivial undertaking (Bishop, 2006).  
 
However, NB is a very well established ML method, and relative to other ML methods 
it is computationally inexpensive. It has also been successfully applied in several 
other bioinformatics problems. The various refined Bayesian methods described 
above have been reasonably successful in their predictions for specific GWA studies. 
However, as has been seen with other ML methods, there does not currently appear 
to be one approach which seems significantly more accurate across multiple studies 
or multiple disease types, and the various approaches reviewed here remain an area 
of active research. 
 
 
Artificial Neural Networks 
Artificial neural networks (ANNs) have been applied to both supervised and 
unsupervised learning problems. In essence, they consist of large numbers of highly 
interconnected processing elements, formulated as networks that may modify their 
constituent weighting functions in order to adapt and respond to inputs, such as 
training data. ANNs were once a mainstay of machine learning techniques, but have 
been eclipsed in recent years as classifiers, due to the superior performance of 
SVMs in particular. 
 
In terms of applications to GWA study analysis, Stassen et al. (2009) applied an ANN 
methodology in order to investigate the extent to which the subjects’ immunoglobulin 
M levels can be reproducibly predicted from a multi-locus genotype. The research 
was based upon training data consisting of 1,042 subjects genotyped for 5,728 SNPs 
and a test sample of 746 subjects genotyped for 545,080 SNPs. The study showed 
one of the strengths of applying an ANN: namely, the ability of the method to deal 
with nonlinear associations. The resulting classifiers “predicted immunoglobulin M 
levels from the subjects’ multi-locus genotypes at acceptable error rates through a 
configuration of 15 genomic loci (61 SNPs).” 
  
Tomita et al. (2004) implemented a method that used an ANN implemented as 
follows: “For the analysis of 25 SNPs, 50 input layer units were provided. The 
number of hidden layer units was changed from the usual 6 to 10, to optimize the 
ANN for the highest possible prediction accuracy. The output layer had only 1 unit. 
Because the ANN model has connection weight parameters, which depend on the 
number of connection units, analysis of 25 SNPs with 6 hidden layer units requires 
306 connection weight parameters.” Their implementation was used to analyse 25 
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SNPs of 17 genes in a sample of 344 Japanese people, and then 10 susceptible 
SNPs of childhood allergic asthma were selected. The accuracy of the ANN model 
with 10 SNPs” was 97.7% for learning data and 74.4% for evaluation data”. 
 
Advantages and Disadvantages of Artificial Neural Networks 
One disadvantage of ANNs is that when using multi-layer perceptrons, as would be 
expected for dealing with the types of application we are considering, care must be 
taken with the implementation to avoid the algorithm becoming trapped in local 
minima (Bishop, 2000).  
 
Another possible disadvantage is the potential complexity of the ANN itself, which 
may impact the implementation of the method, with a corresponding decrease in 
performance of the algorithm. However, ANNs implicitly allow for nonlinear relations 
between the independent and dependent variables which is a great advantage when 
dealing with modelling multiple SNP interactions. ANNs do not require explicit 
distributional assumptions such as normality, and they handle missing data well 
(Sargent 2001). The method is particularly well-suited to problems where there is a 
large signal-to-noise ratio, and as seen by Tomita et al (2004) they are adaptable to 
studies with two and three-way interactions. However, there remain limited examples 
of ANNs applied to GWA study data when compared to support vector machines, for 
example. 
 
Regression 
Regression analysis is a well-established statistical tool for the investigation of 
relationships between variables. For example, in classical linear regression, the 
�1, …�� . The general approach has proved useful in analysis of GWA study data 
and there have been several investigations of its effectiveness, with refinements to 
the underlying method improving predictive accuracy. 
 
Although a statistical model, there have been some notable reports that seek to meld 
regression and ML methods. One example is Briggs et al. (2010). The approach 
used was a four-stage methodology. Firstly, RF was used to identify promising 
regions harbouring epistatic candidates for PTPN22, a known epistatic factor, in 512 
rheumatoid arthritis families consisting of 292 affected sibling pairs. The second 
stage was to use conventional logistic regression models to test for epistasis, 
assuming a multiplicative interaction. After performing a replication analysis, the final 
results were subject to a combined analysis from two rheumatoid arthritis data sets, 
with 1,624 cases and 2,506 controls. Four novel susceptibility genes were identified, 
and a framework for epistatic interactions resulted. 
 
A further study (Kooperberg & Ruczinski, 2005) applied Monte Carlo logic regression 
(MCLR), an approach that combines Markov chain Monte Carlo and logic regression 
in an adaptive regression methodology. The goal was to construct predictors as 
Boolean combinations of binary covariates such as SNPs. The result was a collection 
of SNP interactions hypothesised to be associated with a disease outcome. The 
method was applied to a study of heart disease with 779 participants and 89 SNPs in 
62 candidate genes. Comparison with statistical analyses showed results of varying 
accuracy, and a subsequent application of the method to a simulation study 
highlighted the potential for this approach with further refinements to the method. 
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Monte Carlo-based regression: odds ratios from the models implemented by Kooperberg & Ruczinksi 
(2005). 
 
Advantages and Disadvantages of Regression-Based Methods 
There are certain disadvantages occur with the application of combined ML and 
regression methods. In particular, they exhibit inferior accuracy for real study data 
when compared with, for example, SVMs. Further, there exist differing opinions on 
how they should be constructed (Guan & Stephens, 2011), with no particular 
consensus on the optimal approach currently. However, these techniques show 
promise and as they continue to be developed improvements in the methodology will 
emerge. 
 
 
Other approaches 
Other methods have been applied that attempt to bridge the gap between the 
traditional statistical methods of GWA study analysis and the refinements provided by 
applying ML techniques with the relatively large training data sets available. One 
approach taken is to use regularisation methods to mitigate the issue of overfitting. A 
typical application is to apply some kind of penalty function that restricts complexity, 
and this is particularly useful when the data sets to be analysed are very large. One 
approach is to use a method referred to as Lasso - least absolute shrinkage and 
selection operator – which computes a particular norm for the data in question and 
then constrains the values of the data. This approach can effectively precondition the 
data and should, in principle, result in improved prediction accuracy. These methods 
are discussed in detail in Szymczak et al. (2009). 
 
Due to the variety of approaches, we mention one application which is illustrative of 
how such methods work. Li et al. (2010) started from the assertion that we have 
remarked upon earlier in this report, namely that “GWAs, based on a single SNP 
analysis are too simple to elucidate a comprehensive picture of the genetic 
architecture of phenotypes. A simultaneous analysis of a large number of SNPs, 
although statistically challenging, especially with a small number of samples, is 
crucial for genetic modelling”. In order to facilitate this, they presented a framework 
based upon a two-stage procedure for multi-SNP modelling and analysis. The first 
step involved a preconditioned response variable using a supervised principle 
component analysis and then formulating a Bayesian-type lasso method to select a 
subset of significant SNPs. The Bayesian lasso was implemented via a hierarchical 
model, in which scale mixtures are used as prior distributions for the genetic effects 
and exponential priors are considered for their variances. The resulting models are 
then solved by using the Markov chain Monte Carlo (MCMC) algorithm. This is of 
interest as the potential refinements implemented by the authors are relevant to 
several of the other ML methods discussed above. The analysis was performed upon 
a data set from the FHS, a cardiovascular study based in Framingham, 
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Massachusetts. SNPs were chosen that could not be neglected according to the data 
– for example, the phenotypic data of BMI in a middle age measure of each subject 
in the data for a single SNP analysis. The resulting SNPs were found to be well-
correlated with existing study results for this trait. The authors concluded that the use 
of the lasso method implied that “in this framework, SNPs with significant genetic 
effects can be identified more accurately.” 
 
Conclusions 
We have reviewed some of the main machine learning implementations that have 
been applied specifically for analysis of genome-wide association studies. As the 
number of GWA studies continues to increase, the corresponding analysis methods 
will naturally need to be refined and improved in order to derive the greatest clinical 
and medical information from the wealth of data that GWA studies provide (Goldstein 
et al. 2010) 
 
We echo the points made by Clark et al. (2004): namely, the conclusion by the 
authors that the on-going focus should be in two main areas. Firstly, “computational 
methods for data mining and machine learning”, and secondly “bioinformatics 
methods for incorporating prior biological knowledge into data analysis algorithms”. 
The fact that ML methods should become a mainstay of GWA study data analysis 
was made by Moore et al. (2010). 
 
A recent meeting at the “Genetic Analysis Workshop 16” focused on ML approaches 
as “promising complements to standard single-and multi-SNP analysis methods for 
understanding the overall genetic architecture of complex human diseases. However, 
because they are not optimized for genome-wide SNP data, improved 
implementations and new variable selection procedures are required.” The review 
paper was published after this meeting – Szymczak et al. (2009) – suggests how 
some of these recommendations may be implemented, and add to these ideas 
below. 
 
In conclusion, from this brief review of some of the more salient ML methods and 
their relative successes, we make the following comments. 
 

1) Ensure that nonlinearity is represented in the method. That the underlying 
biology of how SNPs manifest in the genome is suggested as being nonlinear in 
association has been again shown in a recent GWA study focused upon Alzheimer’s 
disease (Infant et al., 2004). Restriction to the assumption of linearity is a limitation 
that should be overcome, given the predictive accuracy of some of the methods 
discussed herein. Further, contributions such as epistasis, are not able to be 
analysed effectively within such a linear framework (Marchini et al. 2005). 
 

2) Use as much metadata as possible. With such vast amounts of data available, it is 
possible to envisage GWA studies that have close association with established 
haplotypes – for example, the international HapMap project 
(http://snp.cshl.org/index.html). The ability for machine learning methods to closely 
integrate their results with such databases may be very powerful. This may also allow 
the relaxation of the fact that most existing GWA study analyses are “single-SNP” 
analyses, which simply test each SNP, one at a time, for association with the 
phenotype.  
 

3) Use the underlying biology. One of the most key aspects that machine learning 
methods should adopt is to be guided by the underlying biology and the 
corresponding allelic architecture. It is expected that as the methods become more 
widespread for GWA studies, and thus the applications become more refined, they 
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will be tailored according to the underlying biology. This is partly covered by the 
assumption of nonlinearity, discussed above. One notable example is HaploBuild 
(Laramie et al., 2007) which presents an alternative method to haplotype creation 
than the ‘sliding window’ approach that is frequently used. One key effect of this 
approach is that when neighbouring SNPs are in strong LD, the windowing method 
may not capture appropriate haplotype diversity. Although not a machine learning 
method per se, HaploBuild indicates that respect of the underlying biology can result 
in methods with greater utility. Another example of an approach that does not use 
machine learning is Holmans et al. (2013). In Pirooznia et al. (2012) the authors 
conclude that “A common challenge for all the classifiers we tested is the problem of 
appropriate feature selection. Although we found that the prediction improved with 
increasing numbers of SNPs included in the classifier models, it is conceivable that 
we could do even better if we were able to identify and include only the most 
etiologically relevant sets of SNPs”. Genotype-phenotype associations would be one 
outcome of such an approach. 
 

4) Use the identification of novel SNPs to guide research focus upon disease 
Disease association and identification of traits suggest relevance to a particular 
disease or condition are key objectives for GWA studies. However, even producing 
suggestions for further investigation, in the case of novel SNP associations has 
shown to be of great value. One example was the discovery of an allele in PNPLA3 
(Romeo et al., 2008), and the consequent understanding of this allele is involved in 
hepatic triglyceride metabolism. Machine learning, appropriately implemented, can 
assist with finding such associations and thus suggesting avenues for further 
research.  
 
One method that we suggest to implement many of the above points is to use an 
entirely novel approach, borrowed from a different field, for machine learning applied 
to analyse GWA studies. Our approach is based upon a promising method that has 
been used to predict earthquakes (Oh et al., 2008). The nature of the problem is 
quite analogous: relatively large sets of data which require classification based upon 
factors which have a certain threshold significance. The key point here is that the 
method is based upon Bayesian analysis which, as we have already seen, has had 
some success when applied to GWA studies, but this particular refinement includes 
automatic relevance detection. This consideration has not yet been implemented and 
it would be of interest to investigate further if such an approach is viable in the 
current context. 
 
We conclude by mentioning the exciting possibilities promised by GWA studies, but 
also by the emergence of powerful and effective machine learning techniques to 
unlock the great biomedical potential of this area of research. 
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